
58
Computation of the Singular Value

Decomposition

Alan Kaylor Cline
The University of Texas at Austin

Inderjit S. Dhillon
The University of Texas at Austin

58.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . .58-1
58.2 Algorithms for the Singular Value

Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58-4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58-12

58.1 Singular Value Decomposition

Definitions:

Given a complex matrix A having m rows and n columns, if σ is a nonnegative scalar and u and

v are nonzero m- and n-vectors, respectively, such that

Av = σu and A∗u = σv,

then σ is a singular value of A and u and v are corresponding left and right singular vectors,

respectively. (For generality it is assumed that the matrices here are complex, although given these

results, the analogs for real matrices are obvious.)

If, for a given positive singular value, there are exactly t linearly independent corresponding right

singular vectors and t linearly independent corresponding left singular vectors, the singular value

has multiplicity t and the space spanned by the right (left) singular vectors is the corresponding

right (left) singular space.

Given a complex matrix A havingm rows and n columns, the matrix product UΣV ∗ is a singular

value decomposition for a given matrix A if

• Uand V , respectively, have orthonormal columns.

• Σ has nonnegative elements on its principal diagonal and zeros elsewhere.

• A = UΣV ∗.

Let p and q be the number of rows and columns of Σ. U is m × p, p ≤ m, and V is n × q with

q ≤ n.

There are three standard forms of the SVD. All have the ith diagonal value of Σ denoted σi
and are ordered as follows: σ1 ≥ σ2 ≥ · · · ≥ σk, and r is the index such that σr > 0 and either

k = r or σr+1 = 0.

1. p = m and q = n. The matrix Σ is m×n and has the same dimensions as A (see Figures 58.1

and 58.2).

2. p = q = min{m,n}.The matrix Σ is square (see Figures 58.3 and 58.4).

3. If p = q = r, the matrix Σ is square. This form is called a reduced SVD and denoted is by

ÛΣ̂V̂ ∗ (see Figures 58.5 and 58.6).
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FIGURE 58.1 The first form of the singular value decomposition where m ≥ n.

FIGURE 58.2 The first form of the singular value decomposition where m < n.

FIGURE 58.3 The second form of the singular value decomposition where m ≥ n.

FIGURE 58.4 The second form of the singular value decomposition where m < n.

FIGURE 58.5 The third form of the singular value decomposition where r ≤ n ≤ m.

FIGURE 58.6 The third form of the singular value decomposition where r ≤ m < n.

Facts:

The results can be found in [GV96, pp. 70–79]. Additionally, see Section 5.6 for introductory
material and examples of SVDs, Chapter 24 for additional information on singular value
decomposition, Chapter 21 for information on perturbations of singular values and vectors,
and Section 52.9 for information about numerical rank.
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1. If UΣV ∗ is a singular value decomposition for a given matrix A, then the diagonal
elements {σi} of Σ are singular values of A. The columns {ui}pi=1of U and {vi}qi=1 of
V are left and right singular vectors of A, respectively.

2. If m ≥ n, the first standard form of the SVD can be found as follows:

(a) Let A∗A = V ΛV ∗ be an eigenvalue decomposition for the Hermitian, positive
semidefinite n×n matrix A∗A such that Λ is diagonal (with the diagonal entries
in nonincreasing order) and V is unitary.

(b) Let the m× n matrix Σ have zero off-diagonal elements and for i = 1, . . . , n let
σi, the ith diagonal element of Σ, equal +

√
λi, the positive square root of the ith

diagonal element of Λ.

(c) For i = 1, . . . , n, let the m×m matrix U have ith column, ui, equal to 1/σiAvi
if σi 6= 0. If σi = 0, let ui be of unit length and orthogonal to all uj for j 6= i,
then UΣV ∗ is a singular decomposition of A.

3. If m < n the matrix A∗ has a singular value decomposition UΣV ∗ and V ΣTU∗ is a
singular value decomposition for A. The diagonal elements of Σ are the square roots
of the eigenvalues of AA∗. The eigenvalues of A∗A are those of AA∗ plus n−m zeros.
The notation ΣT rather than Σ∗ is used because in this case the two are identical and
the transpose is more suggestive. All elements of Σ are real so that taking complex
conjugates has no effect.

4. The value of r, the number of nonzero singular values, is the rank of A.
5. If A is real, then U and V (in addition to Σ) can be chosen real in any of the forms

of the SVD.
6. The range of A is exactly the subspace of Cm spanned by the r columns of U that

correspond to the positive singular values.
7. In the first form, the null space of A is that subspace of Cn spanned by the n − r

columns of V that correspond to zero singular values.
8. In reducing from the first form to the third (reduced) form, a basis for the null

space of A has been discarded if columns of V have been deleted. A basis for the space
orthogonal to the range of A (i.e., the null space of A∗ ) has been discarded if columns
of U have been deleted.

9. In the first standard form of the SVD, U and V are unitary.
10. The second form can be obtained from the first form simply by deleting columns

n+ 1, . . . ,m of U and the corresponding rows of S, if m > n, or by deleting columns
m + 1, . . . , n of V and the corresponding columns of S, if m < n. If m 6= n, then
only one of U and V is square and either UU∗ = Im or V V ∗ = In fails to hold. Both
U∗U = Ip and V ∗V = Ip.

11. The reduced (third) form can be obtained from the second form by taking only the
r× r principle submatrix of Σ, and only the first r columns of U and V . If A is rank
deficient (i.e., r < min{m,n}), then neither U nor V is square and neither U∗U nor
V ∗V is an identity matrix.

12. If p < m, let Ũ be an m× (m− p) matrix of columns that are mutually orthonormal
to one another as well as to the columns of Uand define the m×m unitary matrix

U
_

=
[
U Ũ

]
.

If q < n, let Ṽ be an n × (n − q) matrix of columns that are mutually orthonormal
to one another as well as to the columns of V and define the n× n unitary matrix

V
_

=
[
V Ṽ

]
.

Let Σ
_

be the m× n matrix

Σ
_

=

[
Σ 0
0 0

]
.
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Then

A = U
_

Σ
_
V
_∗, AV

_
= U
_

Σ
_∗, A∗ = V

_
Σ
_TU

_∗, and A∗U
_

= V
_

Σ
_T .

13. Let UΣV ∗be a singular value decomposition for A, an m×n matrix of rank r. Then:

(a) There are exactly r positive elements of Σ and they are the square roots of the r
positive eigenvalues of A∗A (and also AA∗) with the corresponding multiplicities.

(b) The columns of V are eigenvectors of A∗A; more precisely, vj is a normalized
eigenvector of A∗A corresponding to the eigenvalue σ2

j , and uj satisfies σjuj =
Avj .

(c) Alternatively, the columns of U are eigenvectors of AA∗; more precisely, uj is
a normalized eigenvector of AA∗ corresponding to the eigenvalue σ2

j , and vj
satisfies σjvj = A∗uj .

14. The singular value decomposition UΣV ∗ is not unique. If UΣV ∗ is a singular value
decomposition, so is (−U)Σ(−V ∗). The singular values may be arranged in any order
if the columns of singular vectors in U and V are reordered correspondingly.

15. If the singular values are in nonincreasing order, then the only option for the construc-
tion of Σ is the choice for its dimensions p and q and these must satisfy r ≤ p ≤ m
and r ≤ q ≤ n.

16. If A is square and if the singular values are ordered in a nonincreasing fashion, the
matrix Σ is unique.

17. Corresponding to a simple (i.e., nonrepeated) singular value σj , the left and right
singular vectors, uj and vj , are unique up to scalar multiples of modulus one. That
is, if uj and vj are singular vectors, then for any real value of θ so are eiθuj and
eiθvj , but no other vectors are singular vectors corresponding to σj .

18. Corresponding to a repeated singular value, the associated left singular vectors uj
and right singular vectors vj may be selected in any fashion such that they span
the proper subspace. Thus, if uj1 , . . . ,ujr and vj1 , . . . ,vjr are the left and right
singular vectors corresponding to a singular value σj of multiplicity s, then so are
u′j1 , . . . ,u

′
jr and v′j1 , . . . ,v

′
jr if and only if there exists an s × s unitary matrix Q

such that [u′j1 , . . . ,u
′
jr ] = [uj1 , . . . ,ujr ]Q and [v′j1 , . . . ,v

′
jr

] = [vj1 , . . . ,vjr ]Q.

Examples:

For examples illustrating SVD, see Section 5.6.

58.2 Algorithms for the Singular Value Decomposition

Generally, algorithms for computing singular values are analogs of algorithms for com-
puting eigenvalues of symmetric matrices. See Chapter 55 and Chapter 59 for additional
information. The idea is always to find square roots of eigenvalues of ATA without actu-
ally computing ATA. As before, we assume the matrix A whose singular values or singular
vectors we seek is m × n. All algorithms assume m ≥ n; if m < n, the algorithms may be
applied to AT . To avoid undue complication, all algorithms will be presented as if the ma-
trix is real. Nevertheless, each algorithm has an extension for complex matrices. Algorithm
1 is presented in three parts. It is analogous to the QR algorithm for symmetric matrices.
The developments for it can be found in [GK65], [GK68], [BG69], and [GR70]. Algorithm
1a is a Householder reduction of a matrix to bidiagonal form. Algorithm 1c is a step to be
used iteratively in Algorithm 1b. Algorithm 2 computes the singular values and singular
vectors of a bidiagonal matrix to high relative accuracy [DK90], [Dem97]. Algorithm 3 gives
a “square-root-free” method to compute the singular values of a bidiagonal matrix to high
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relative accuracy — it is the method of choice when only singular values are desired [Rut54],
[Rut90], [FP94], [PM00]. Algorithm 4 computes the singular values of an n× n bidiagonal
matrix by the bisection method, which allows k singular values to be computed in O(kn)
time. By specifying the input tolerance tol appropriately, Algorithm 4 can also compute the
singular values to high relative accuracy. Algorithm 5 computes the SVD of a bidiagonal
by the divide and conquer method [GE95]. The most recent method, based on the method
of multiple relatively robust representations (not presented here), is the fastest and allows
computation of k singular values as well as the corresponding singular vectors of a bidiago-
nal matrix in O(kn) time [DP04a], [DP04b], [GL03], [WLV05]. All of the above-mentioned
methods first reduce the matrix to bidiagonal form. The following algorithms iterate di-
rectly on the input matrix. Algorithms 6 and 7 are analogous to the Jacobi method for
symmetric matrices. Algorithm 6 — also known as the “one-sided Jacobi method for SVD”
— can be found in [Hes58] and Algorithm 7 can be found in [Kog55] and [FH60]. Algorithm
7 begins with an orthogonal reduction of the m × n input matrix so that all the nonzeros
lie in the upper n × n portion. (Although this algorithm was named biorthogonalization
in [FH60], it is not the biorthogonalization found in certain iterative methods for solving
linear equations.) Many of the algorithms require a tolerance ε to control termination. It is
suggested that ε be set to a small multiple of the unit round off precision εo.

Algorithm 1a: Householder reduction to bidiagonal form:
Input: m,n,A where A is m× n.
Output: B,U, V so that B is upper bidiagonal, U and V are products of House-
holder matrices, and A = UBV T .

1. B ← A. (This step can be omitted if A is to be overwritten with B.)
2. U = Im×n.
3. V = In×n.
4. For k = 1, . . . , n

a. Determine Householder matrix Qk with the property that:

• Left multiplication by Qk leaves components 1, . . . , k − 1 unaltered, and

• Qk



0
...
0

bk−1,k
bk,k
bk+1,k

...
bm,k


=



0
...
0

bk−1,k
s
0
...
0


, where s = ±

√
m∑
i=k

b2i,k.

b. B ← QkB.

c. U ← UQk.

d. If k ≤ n− 2, determine Householder matrix Pk+1 with the property that:

• Right multiplication by Pk+1 leaves components 1, . . . , k unaltered, and

• [0 · · · 0 bk,k bk,k+1 bk,k+2 · · · bk,n]Pk+1 = [0 · · · 0 bk,k s 0 · · · 0] ,

where s = ±
√∑n

j=k+1 b
2
k,j .

e. B ← BPk+1.

f. V ← Pk+1V .
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Algorithm 1b: Golub–Reinsch SVD:
Input: m,n,A where A is m× n.
Output: Σ, U, V so that Σ is diagonal, U and V have orthonormal columns, U is
m× n, V is n× n, and A = UΣV T .

1. Apply Algorithm 1a to obtain B,U, V so that B is upper bidiagonal, U and V are
products of Householder matrices, and A = UBV T .

2. Repeat:

a. If for any i = 1, . . . , n− 1, |bi,i+1| ≤ ε (|bi,i|+ |bi+1,i+1|) , set bi,i+1 = 0.

b. Determine the smallest p and the largest q so that B can be blocked as

B =

B1,1 0 0
0 B2,2 0
0 0 B3,3

 p
n− p− q

q

where B3,3 is diagonal and B2,2 has no zero superdiagonal entry.

c. If q = n, set Σ = the diagonal portion of B STOP.

d. If for i = p+ 1, . . . , n− q − 1, bi,i = 0, then
Apply Givens rotations so that bi,i+1 = 0 and B2,2 is still
upper bidiagonal. (For details, see [GV96, p. 454].)

else
Apply Algorithm 1c to n,B,U, V, p, q.

Algorithm 1c: Golub–Kahan SVD step:
Input: n,B,Q, P, p, q where B is n × n and upper bidiagonal, Q and P have or-
thogonal columns, and A = QBPT .
Output: B,Q,P so that B is upper bidiagonal, A = QBPT , Q and P have or-
thogonal columns, and the output B has smaller off-diagonal elements than the
input B. In storage, B,Q, and P are overwritten.

1. Let B2,2 be the diagonal block of B with row and column indices p+ 1, . . . , n− q.
2. Set C = lower, right 2× 2 submatrix of BT2,2B2,2.
3. Obtain eigenvalues λ1, λ2 of C. Set µ = whichever of λ1, λ2 that is closer to c2,2.
4. k = p+ 1, α = b2k,k − µ, β = bk,kbk,k+1.
5. For k = p+ 1, . . . , n− q − 1

a. Determine c = cos(θ) and s = sin(θ) with the property that:

[α β]

[
c s
−s c

]
=
[√

α2 + β2 0
]
.

b. B ← BRk,k+1(c, s) where Rk,k+1(c, s) is the Givens rotation matrix that acts
on columns k and k + 1 during right multiplication.

c. P ← PRk,k+1(c, s).

d. α = bk,k, β = bk+1,k.

e. Determine c = cos(θ) and s = sin(θ) with the property that:[
c −s
s c

] [
α
β

]
=

[√
α2 + β2

0

]
.

f. B ← Rk,k+1(c,−s)B, where Rk,k+1(c,−s) is the Givens rotation matrix that
acts on rows k and k + 1 during left multiplication.

g. Q← QRk,k+1(c, s).

h. if k ≤ n− q − 1α = bk,k+1, β = bk,k+2.
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Algorithm 2a: High Relative Accuracy Bidiagonal SVD:
Input: n,B where B is an n× n upper bidiagonal matrix.
Output: Σ is an n× n diagonal matrix, U and V are orthogonal n× n matrices,
and B = UΣV T .

1. Compute σ to be a reliable underestimate of σmin(B) (for details, see [DK90]).
2. Compute σ = maxi(bi,i, bi,i+1).
3. Repeat:

a. For all i = 1, . . . , n − 1, set bi,i+1 = 0 if a relative convergence criterion is met
(see [DK90] for details).

b. Determine the smallest p and largest q so that B can be blocked as

B =

B1,1 0 0
0 B2,2 0
0 0 B3,3

 p
n− p− q

q

where B3,3 is diagonal and B2,2 has no zero superdiagonal entry.

c. If q = n, set Σ = the diagonal portion of B. STOP.

d. If for i = p+ 1, . . . , n− q − 1, bi,i = 0, then
Apply Givens rotations so that bi,i+1 = 0 and B2,2 is still
upper bidiagonal. (For details, see [GV96, p. 454].)

else
Apply Algorithm 2b with n,B,U, V, p, q, σ, σ as inputs.

Algorithm 2b: Demmel–Kahan SVD step:
Input: n,B,Q, P, p, q, σ, σ where B is n× n and upper bidiagonal, Q and P have
orthogonal columns such that A = QBPT , σ ≈ ||B|| and σ is an underestimate of
σmin(B).
Output: B,Q,P so that B is upper bidiagonal, A = QBPT , Q and P have or-
thogonal columns, and the output B has smaller off-diagonal elements than the
input B. In storage, B,Q, and P are overwritten.

1. Let B2,2 be the diagonal block of B with row and column indices p+ 1, . . . , n− q.
2. If tol∗σ ≤ ε0σ, then

a. c′ = c = 1.

b. For k = p+ 1, n− q − 1

• α = cbk,k;β = bk,k+1.

• Determine c and s with the property that:

[α β]

[
c s
−s c

]
= [r 0] , where r =

√
α2 + β2.

• If k 6= p+ 1, bk−1,k = s′r.

• P ← PRk,k+1(c, s), where Rk,k+1(c, s) is the Givens rotation matrix that acts
on columns k and k + 1 during right multiplication.

• α = c′r, β = sbk+1,k+1.

(continued)
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Algorithm 2b: Demmel–Kahan SVD step: (Continued)

• Determine c′ and s′ with the property that:[
c′ −s′
s′ c′

] [
α
β

]
=

[√
α2 + β2

0

]
.

• Q← QRk,k+1(c,−s), where Rk,k+1(c,−s) is the Givens rotation matrix that
acts on rows k and k + 1 during left multiplication.

• bk,k =
√
α2 + β2.

c. bn−q−1,n−q = (bn−q,n−qc)s
′; bn−q,n−q = (bn−q,n−qc)c

′.
Else

d. Apply Algorithm 1c to n,B,Q, P, p, q.

Algorithm 3a: High Relative Accuracy Bidiagonal Singular Values:
Input: n,B where B is an n× n upper bidiagonal matrix.
Output: Σ is an n× n diagonal matrix containing the singular values of B.

1. Square the diagonal and off-diagonal elements of B to form the arrays s and e,
respectively, i.e., for i = 1, . . . , n− 1, si = b2i,i, ei = b2i,i+1, end for sn = b2n,n.

2. Repeat:

a. For all i = 1, . . . , n− 1, set ei = 0 if a relative convergence criterion is met (see
[PM00] for details).

b. Determine the smallest p and largest q so that B can be blocked as

B =

B1,1 0 0
0 B2,2 0
0 0 B3,3

 p
n− p− q

q

where B3,3 is diagonal and B2,2 has no zero superdiagonal entry.

c. If q = n, set Σ =
√

diag(s). STOP.

d. If for i = p+ 1, . . . , n− q − 1, si = 0 then
Apply Givens rotations so that ei = 0 and B2,2 is still
upper bidiagonal. (For details, see [GV96, p. 454].)

else
Apply Algorithm 3b with inputs n, s, e.

Algorithm 3b: Differential quotient-difference (dqds) step:
Input: n, s, e where s and e are the squares of the diagonal and superdiagonal
entries, respectively, of an n× n upper bidiagonal matrix.
Output: s and e are overwritten on output.

1. Choose µ by using a suitable shift strategy. The shift µ should be smaller than
σmin(B)2. See [FP94, PM00] for details.

2. d = s1 − µ.

(continued)
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Algorithm 3b: Differential quotient-difference (dqds) step: (Continued)

1. For k = 1, . . . , n− 1

a. sk = d+ ek.

b. t = sk+1/sk.

c. ek = ekt.

d. d = dt− µ.
e. If d < 0, go to step 1.

2. sn = d.

Algorithm 4a: Bidiagonal Singular Values by Bisection:
Input: n,B, α, β, tol where n×n is a bidiagonal matrix, [α, β) is the input interval,
and tol is the tolerance for the desired accuracy of the singular values.
Output: w is the output array containing the singular values of B that lie in
[α, β).

1. nα = Negcount(n,B, α).
2. nβ = Negcount(n,B, β).
3. If nα = nβ , there are no singular values in [α, β). STOP.
4. Put [α, nα, β, nβ ] onto Worklist .
5. While Worklist is not empty do

a. Remove [low , nlow , up, nup ] from Worklist .

b. mid = (low + up)/2.

c. If (up − low < tol), then

• For i = nlow + 1, nup , w(i− na) = mid ;

Else

• nmid = Negcount(n,B,mid).

• If nmid > nlow then
Put [low , nlow ,mid , nmid ] onto Worklist .

• If nup > nmid then
Put [mid , nmid , up, nup ] onto Worklist .

Algorithm 4b: Negcount (n,B, µ):
Input: The n× n bidiagonal matrix B and a number µ.
Output: Negcount , i.e., the number of singular values smaller than µ is returned.

1. t = −µ.
2. For k = 1, . . . , n− 1

d = b2k,k + t.
If (d < 0) then Negcount = Negcount + 1
t = t ∗ (b2k,k+1/d)− µ.

End for
3. d = b2n,n + t.
4. If (d < 0), then Negcount = Negcount + 1.
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Algorithm 5: DC SVD(n,B,Σ, U, V ): Divide and Conquer Bidiagonal SVD:
Input: n,B where B is an (n+ 1)× n lower bidiagonal matrix.
Output: Σ is an n×n diagonal matrix, U is an (n+1)×(n+1) orthogonal matrix,
V is an orthogonal n× n matrix, so that B = UΣV T .

1. If n < n0, then apply Algorithm 1b with inputs n+ 1, n,B to get outputs Σ, U, V .
Else

Let B =

(
B1 αkek 0

0 βke1 B2

)
, where k = n/2.

a. Call DC SVD(k − 1, B1,Σ1, U1,W1).

b. Call DC SVD(n− k,B2,Σ2, U2,W2).

c. Partition Ui = (Qi qi) , for i = 1, 2, where qi is a column vector.

d. Extract l1 = QT1 ek, λ1 = qT1 ek, l2 = QT2 e1, λ2 = qT2 e1.

e. Partition B as

B =

(
c0q1 Q1 0 −s0q1

s0q2 0 Q2 c0q2

)
r0 0 0

αkl1 Σ1 0

βkl2 0 Σ2

0 0 0


0 W1 0

1 0 0

0 0 W2


T

= (Q q)

(
M

0

)
WT

where r0 =
√

(αkλ1)2 + (βkλ2)2, c0 = αkλ1/r0, s0 = βkλ2/r0.

f. Compute the singular values of M by solving the secular equation

f(w) = 1 +

n∑
k=1

z2k
d2k − w2

= 0,

and denote the computed singular values by ŵ1, ŵ2, . . . , ŵn.

g. For i = 1, . . . , n, compute

ẑi =

√√√√(ŵ2
n − d2i )

i−1∏
k=1

(ŵ2
k − d2i )

(d2k − d2i )

n−1∏
k=1

(ŵ2
k − d2i )

(d2k+1 − d2i )
.

h. For i = 1, . . . , n, compute the singular vectors

ui =

(
ẑ1

d21 − ŵ2
i

, · · · , ẑn
d2n − ŵ2

i

)/√√√√ n∑
k=1

ẑ2k
(d2k − ŵ2

i )
2
,

vi =

(
−1,

d2ẑ2
d22 − ŵ2

i

, · · · , dnẑn
d2n − ŵ2

i

)/√√√√1 +

n∑
k=2

(dkẑk)2

(d2k − ŵ2
i )

2

and let U = [u1, . . . ,un], V = [v1, . . . ,vn].

i. Return Σ =

(
diag(ŵ1, ŵ2, . . . , ŵn)

0

)
, U ← (QU q) , V ←WV .
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Algorithm 6: Biorthogonalization SVD:
Input: m,n,A where A is m× n.
Output: Σ, U, V so that Σ is diagonal, U and V have orthonormal columns, U is
m× n, V is n× n, and A = UΣV T .

1. U ← A. (This step can be omitted if A is to be overwritten with U .)
2. V = In×n.

3. Set N2 =

(
n∑
i=1

n∑
j=1

u2i,j

)
, s = 0, and first = true.

4. Repeat until s1/2 ≤ ε2N2 and first = false.

a. Set s = 0 and first = false.

b. For i = 1, . . . , n− 1.

i. For j = i+ 1, . . . , n

• s← s+

(
m∑
k=1

uk,iuk,j

)2

.

• Determine d1, d2, c = cos(θ), and s = sin(ϕ) such that:

[
c −s
s c

]
m∑
k=1

u2k,i

m∑
k=1

uk,iuk,i

m∑
k=1

uk,iuk,i

m∑
k=1

u2k,j


[
c s
−s c

]
=

[
d1 0
0 d2

]
.

• U ← URi,j(c, s) where Ri,j(c, s) is the Givens rotation matrix that acts on
columns i and j during right multiplication.

• V ← V Ri,j(c, s).

5. For i = 1, . . . , n:

a. σi =

√
m∑
k=1

u2k,i.

b. U ← UΣ−1.

Algorithm 7: Jacobi Rotation SVD:
Input: m,n,A where A is m× n.
Output: Σ, U, V so that Σ is diagonal, U and V have orthonormal columns, U is
m× n, V is n× n, and A = UΣV T .

1. B ← A. (This step can be omitted if A is to be overwritten with B.)
2. U = Im×n.
3. V = In×n.
4. If m > n, compute the QR factorization of B using Householder matrices so that
B ← QA, where B is upper triangular, and let U ← UQ. (See Algorithm 6 for
details.)

5. Set N2 =

n∑
i=1

n∑
j=1

b2i,j , s = 0, and first = true.

6. Repeat until s ≤ ε2N2 and first = false.

a. Set s = 0 and first = false.

b. For i = 1, . . . , n− 1

(continued)
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Algorithm 7: Jacobi Rotation SVD: (Continued)

i. For j = i+ 1, . . . , n :

• s = s+ b2i,j + b2j,i.

• Determine d1, d2, c = cos(θ) and s = sin(ϕ) with the property that d1
and d2 are positive and[

c −s
s c

] [
bi,i bi,j
bj,i bj,j

] [
ĉ ŝ
−ŝ ĉ

]
=

[
d1 0
0 d2

]
.

• B ← Ri,j(c, s)BRi,j(ĉ,−ŝ) where Ri,j(c, s) is the Givens rotation ma-
trix that acts on rows i and j during left multiplication and Ri,j(ĉ,−ŝ)
is the Givens rotation matrix that acts on columns i and j during right
multiplication.

• U ← URi,j(c, s).

• V ← V Ri,j(ĉ, ŝ).

7. Set Σ to the diagonal portion of B.
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